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Abstract

One of the major applications of the Domain Decomposition Time March-
ing Algorithm is the coupling of the Navier-Stokes systems with Boltzmann
equations in order to compute transitional flows. Another important ap-
plication, is the coupling of a global Navier-Stokes problem with a local
one in order to use different modelizations and/or discretizations. Both of
these applications involve a global Navier-Stokes systems with non standard
boundary conditions. The purpose of this work is to prove, using the classical
Leray-Schauder theory, that these boundary conditions are admissible and
lead to a well posed problem.
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1 Introduction

In this paper we study the Navier-Stokes equations with the new boundary
conditions introduced by the application of the Domain Decomposition Time
Marching Algorithm ( [6], [9], and [10]). These boundary conditions are of
slip type , they could appear either by the application of the Domain Decom-
position Time Marching Algorithm to a Navier-Stokes problem ([9] and [10]),
or to a Navier-Stokes/Boltzmann coupling ([7] and [9]). In the latter case,
they are similar to the analytical slip boundary conditions introduced in [5],
which are derived from kinetic theory in order to replace solving Boltzmann
equations by solving Navier-Stokes equations in the transitional regime.

We study here only the stationary problem. The treatment of the time
dependent problem will follow using the same ideas developed here (see [9]),
and the classical proofs for the standard boundary conditions (see [1]-[3],
and [4]). We begin by describing the strong formulation of the problem in
the first paragraph, then we set the preliminary results necessary for our
study. In the third paragraph we show the equivalence of the strong and the
weak formulations under some regularity hypothesis, from which we deduce
the admissible boundary conditions. We present, then, the study of the
stationary problem. Paragraph 6, deals with the uniqueness results when
the data are sufficiently small. Finally, we present, in the last paragraph,
some conclusions.

2 Motivations

2.1 The general coupling strategy

For coupling external Navier-Stokes equations, with local Navier-Stokes equa-
tions (dense regimes) or local Boltzmann equations (transitional regimes), we
introduce two domains, a global one 2, a local one Qy included in §, and
an interface I'; (Fig. 1 in which I'. denotes I'y,). The global solution W on
) and the local solution Uy, on §dy, are matched by the following boundary




Figure 1: The global geometry

conditions, inspired of Schwarz overlapping techniques :

W = given imposed value on I',

n-o(W) -7 =n-0(U) 7 on the body I',, (equality of friction forces)
gqW)-n+n-o(W)-v=q(Us)-nonT,, (equality of total heat fluxes)
v.n=~0onl,,

Uioe =00n T, Upe = W on the interface I';.

Above, n - o -n and n - o - 7 respectively denote the normal and the
tangential force exerted by the body on the flow, with n the unit normal
vector to the body oriented towards its interior.

The calculation of Uj,. and W satisfying the above boundary conditions
is then obtained by the Domain Decomposition Time Marching Algorithm,
which was introduced by Le Tallec and Tidriri ([6], [9] and [10]) and which
leads to the following algorithm :

Initialization

1. Guess an initial distribution of the conservative variable W in the

global domain 2 ;
2. Advance in time this distribution by using the global Navier-Stokes

solver on N; time steps, with Dirichlet type boundary conditions on the body
Lo




3. Deduce from this result an initial distribution of the local variable Uj,.
on the interface I'; and in the local domain Qy ;

4. Advance in time this distribution by using the local solver on N, time
steps with Dirichlet boundary conditions on I'; and T,.

Iterations

5. From Ul,., compute the friction forces n - o(Uy) - 7 and heat flux
q(Utoe) - m on the body T, ;

6. Advance the global solution in time (/V; steps) by using the global
Navier-Stokes solver with the above viscous forces as boundary conditions
on I[',;

7. From W, compute the value of U, on the interface I'; ;

8. Using this new value as Dirichlet boundary conditions on I';, advance
the local solution in time (V, steps) and go back to step 5 until convergence
is reached.

This algorithm completely uncouples the local and the global problems
which can therefore be solved by independent solvers.

A parallel version is also quite possible although it is generally wiser to
use parallel solvers within steps 6 and 8.

Remark 2.1 The local problem can be either Navier-Stokes or Boltzmann
equations (see [6]-[10]).

2.2 The global Navier-Stokes problem

The global domain 2 is discretized using node centered cells defined on an
unstructured grid. Then, at each time step n and for each cell 7, we solve

/;i I/Vn+1A wn + Z / Wn+1)

JEV() aC;naC;

+ FD(Wn+1) “n; + F(Wn'H)-ni = — F,-n,.
ac;-1r 3C;MTI o aC;nT,

The fluxes F¢ and Fp are computed at time step n 4+ 1 and linearized, with
for example Fz computed by an Osher approximate Riemann solver [9], and
[10].




Pj

Figure 2: A boundary cell

On the body TI',, because of our special choice of boundary conditions,
the flux is given by
0
/ F,-n; = n; - (W) -
80:MTs ac;To | i 0(Ue) i |’
'—Q(Uloc) * N
where the aspect of a boundary cell C; is described in Fig. 2.

In other words, friction forces and heat flux are given explicitly as pre-
dicted by the local solver and the mass flux is imposed to zero. Then, in
order to have a well-posed problem, at least in the incompressible case (see
next paragraphs), the normal stress (the multiplier of the zero mass flux con-
straint) cannot be imposed and must be obtained from the solution WnH,

Remark 2.2 Imposing friction forces to the global solution instead of no
slip boundary conditions allows to have an accurate solution away from the
boundary layer even with a coarse mesh (see [9]).

3 Strong formulation

Let © be the domain occupied by the fluid, I' its boundary as described in
figure (1); we assume that ) satisfy :

) is a simply connected bounded domain in RV,
[ = 00 is of class C?,
FbUFoo =TI and I‘bﬂl“oo :@,

I'’ and Ty, are compacts of nonzero measure.
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In the steady incompressible case, the global problem in the coupling
strategy described above consists in finding u and p satisfying the following
equations :

—vAu+uVu+Vp=f in Q, (2)
divu =0 in Q, (3)

u-n=0 on T, (4)

wu=h on T, (5)

W(Vu-n)r =g, on Ty, (6)

where n is the unit normal to I', 7 is any unit normal to n.

We look for weak solutions of problem (2)-(6), i.e. (2), (3) are satisfied
in a distribution sense and equations (4)-(6) are satisfied in some Sobolev
spaces.

Remark 3.1 From the remark (2.1) we observe that g, can be issued from
a local kinetic model (Boltzmann equations) or a local continuous model
(Navier-Stokes system).

4 Preliminary results

Let H™ 2(T) be a space of trace functions in H™(Q) with the following
norm :

[#llm-sr = if{llellmo/v € H™(Q), ulr = ¢}, (7)
and V the closed subspace of (H(2))" defined by

V={veH(Q)V|divv=0,v-n=0 on Ty, v=0 on I}, (8)
and define

loll = [1Vollo,2,0. (9)

We have the following classical lemma.
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Lemma 4.1 ||.|| is a norm of V equivalent to the norm ||.||12,0.

Lemma 4.2 ([11]) Under hypothesis (1), we have

n: I' - RY (10)
¢ — n(z)
is O and hence, the trace operator
(HY Q)N — H3(T) (11)
W u-n

18 continuous.

Lemma 4.3 ([14]). Let Q satisfy (1). We have :
The injection

whH(Q) C L7(9)

is compact for q; satisfying :

1<qgi<o0 if p2N (12)
) . 1 1 1 .
1<q < quithq givenby—=—-—— if 1<p<N. (13)
¢ p N

In particular we have for p =2 :

2N
HY(Q) c L) for 2<¢< ——
@ L) for 2<g% o,
the injection being continuous. For N = 2, this injection takes place for any
finite ¢ such that ¢ > 2.

Lemma 4.4 ([12]) Let Q be a bounded connected domain. Then
(i) The operator grad is an isomorphism from L%(Q) into V?,
(ii) the operator div is an isomorphism from (V)* into L3(2)
where L3(Q) and V° are defined by

Ve={he H'(Q)",< hyv>=0,Yv e V}.
LX) ={h e Lg(ﬂ),/ﬂh(x)dx — 0}.




We now set

N 0v;
b(u,v,w) = i’jzzl‘/;uj%widx,u,v,w ev (14)
< fiv>= /Q fodz,v eV (15)
< gr,¥ >r,= /Fb g7 -vdy,v eV (16)
((u,v)) = /9 VuVvdz,u,v eV (17)
(u,v) = /qud:c,u,v eV. (18)

If fisin (H1(Q))N and g, in H=2(T}) all the above operators (14)-(18)
are well posed. Moreover, the operator defined by (16) and the trilinear form
defined by (14) satisfy the following properties :

Lemma 4.5 The mapping from V into R defined by (16) is continuous.
Proof: The proof follows directly from lemma 4.2.

Lemma 4.6 (i) The trilinear form b is continuous on V2 x (V N (LV(Q))N
(ii) Let u,v,w € V. Then we have the following relations :

b(u, v, w) = —b(u,w,v), (19)
b(u,v,0) = 0. (20)
(i) Let {un}n>0 be a sequence in V such that u, — u weakly in V. Then :
Aim b(un, un, v) = b(u,u,v), Vv € V. (21)
Proof
We present only the proof of (i) and (ii). For the proof of (iii), see [14] or
[13].
(i) Let w € V then u; € H'(Q) ; from lemma 4.3, we deduce :
1 1 1
e 19O = == _ &
u; € L1(Q), piak il




which implies

Ov; dv;
[ igpidel < uslboaaliz loaslvidona
< Clluslvlledly lwllv- (22)

Therefore we conclude to our result.
(ii) By definition

b(u, v, w) zv/s;uwj,,'wj.

After integration by parts, we obtain

bu,v,w) = —/ij(uiwj),i—k/mu-nv-w
= — | v;uw;; — v'w-u“—i—/ U-nv-w.
\/S; IV Iad Taadv Bl \/;2 Vet et 3} 50
Sinceu € V, we have u-n = 0 on 99 and u;; = divu = 0 on . Therefore,

we get

b(u,v,w) = —/ viu;w;; = —b(u, w,v).
Q

Remark 4.1 For N < 4, it follows from lemma 4.8 that VN (LN (Q)N =V

5 Existence Result

We now go back to our initial formulation:
Find u and p such that :

—vAu+u-Vu+Vp=f in {, (23)
divu =0 in f), (24)

u-n=¢ on I%, (25)

u=h on I, (26)

v(Vu-n)r =g, on Tj. (27)
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5.1 Hypothesis on ¢ and h

The data ¢ on I'y and h on I', must verify some regularity and compatibility
properties. More precisely we assume that :

h€ (H?(To))™, (28)
¢ € HZ(Ty), (29)

- h-n=0, (30)

A é=0. (31)

Lemma 5.1 The relations (28)-(31) imply the ezistence of @« € (H'(Q))N
such that :

Va=0 in Q, (32)
@-n=¢ on T, (33)
a=h on T (34)
Proof
Let ¥ be a function defined on I' such that :
¢-n on T4,
Y= (35)
h on T..
From the assumed hypothesis, on I', ¢ and h we get :
b e @)

Therefore, from the trace theorem, we can take v € H*(Q)" such that :
ulr = ¥. By using the relations (30) and (31) and the Green Formula, we

obtain
/ Vou=0.
0
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Using the regularity of u, we have V- u € L§(Q).
Lemma 4.4 shows that there exists v € Hy(Q)" such that Vv =V -u.
Finally, by taking now @& = u — v, we can see easily that @ verify the relations

(32)-(34).
Now, we are going to pick out some function ¢ in H'(£2) such that :

4 = rotf. (36)
To achieve this, we will use the following proposition :

Proposition 5.1 ([13]) Under the regularity hypothesis (1) and for N = 3
we have

rotH'(Q) = {u € L} ()Y, divu=0, [ u-n= | u-n=0} (37)

Ts Too
Remark 5.1 This result is also valid for N = 2 ([13]).

Under the hypothesis (30)-(31) and the relations (32)-(34) we have :

/r,,ﬁ'”z é =0, (38)

T

/ gn=[ h-n=0. (39)
o Fb

Consequently, from Proposition 5.1, there exists £ € H'(Q), such that we
have (36). From now on we assume that N < 3.

5.2 Weak formulation

Let u € V. After multiplication of (23) by v, integration by parts and by
taking into account the boundary conditions (25)-(27) and the relation (24)
we obtain the following variational formulation :

Find u, € V such that

v((to, v)) + b(iy Uoy v) + b(Uo, Uy v) + b(Uo, U, v)

=—V((ﬂ,v))—b(ﬁ,fb,v)+/rbgf7"v+/ﬂfvu
Yoe VNN

(40)
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5.3 Equivalence between the two formulations

We will show here that the variational formulation (40) is equivalent to the
strong formulation. This is the goal of the following proposition :

Proposition 5.2 If (u,p) is a smooth solution of (2)-(6), then it satisfies
(40). Conversely, if u, is solution of (40), then there ezists a unique function
(up to a constant) p € L*(Q) such that u, + @ and p satisfy :

(i) (2) and (3) in a distribution sense,
(if) (4) in HZ(Ts),

(iii) (5) in H2(Tw),

(iv) (6) in H™%(T}).

Proof
The direct theorem was showed in our introduction of the weak formula-

tion. We then show only the converse.
Let
V = {4 € (Hy())" /divip = 0}.

Let u, be a solution of problem (40) then after multiplication by a test
function in D(Q), and integration by parts and density, we get

< —vAu+(u-Viu—fip >=0,Vp €V (41)

where <,> denotes now the duality between the spaces D'(Q)" and
D(Q)N. We consider the operator —grad(= —V) € L(LZ(Q), H1(Q)V),
and R(—grad) its image in H~1(Q)N. We have the following lemma ( see

[12])
Lemma 5.2 R(—grad) is identical to V° with V° defined by :

Vo={he HY(Q)N/ < h,9p >=0,Yy € V}.

11




The application of this lemma implies the existence of p € L2(9) such

that
—vAu+u-Vu—f+Vp=0 in (H Q)N

Asu € V,u-Vuand f € L? then
—vAu—Vp = div(~vVu+ pld)
= (f—u-Vu) e (L(Q)".
Applying the Green formula implies that there exists
q=(—vVu+pld)-ne H3(3Q)
such that

/ _div(—vVu+ pld) - v
Q

vv—/ di =/ v, Yo e (HY(Q)V.
—I—jgz/uv pdivv= | q-v v € (H(Q))

By replacing div(—vVu + pld) by (f —u - Vu) we get

V((u,v))+b(u,u,v)—j’;pdwv—j{mq-v—/ﬂf'v=0 (42)
Yo € (HY(Q)N.
By subtracting (43) from (40), it remains

q-v—/ g-(v-7)=0,VYVveV.

a9 T,

Now let w arbitrary element of HO%O(F[,), where HO%O(I‘b) is defined by :
Héo(rb) = {v e L*(T});3w € H'(Q),w =0 on Ty andw = v on T}

(see [11] for more details about this space).
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Let v € V such that

v-n=0 on I},
v-Tr=w on [},
v=0 on TI..
Applying the precedent equality, it remains

3
q-Tw =/ 9w, Yw € Heo(I's),
Ty Fb

therefore

g-7=7-(—vVu+pld)-n
=g, in HI(T,).

Remark 5.2 We cannot impose the normal stress in (8)-(7) because of the
presence of a pressure term in q.

5.4 Existence result

Now, we are able to set out the main result of this section.
Theorem 5.1 Let f € H™'(Q) ; then there exists u, € V solution of (40).

Proof
We proceed as in the usual proof of existence for the incompressible
Navier-Stokes equations. Let us define

Wm(u),u] = vllulft +v((@u) + b(G, i,u) - /F g

- /Q fu =+ b(u, %, u).

By using the continuity of b we obtain :

13




b(t, &, u) < calfillo,qall@ll,2.0llullov (43)

with ¢ satisfying (12)-(13). In addition we have :
b1, @, u) < calliifly 5 allull (44)

Using lemma 4.1 and lemma 4.2 we arrive to :

[Ym(u)yu] > lull® + b(u, @, u)
—lull(@llal + czll@lli p + sllg-ll_s.p, + [1fll-1,2:)-

So, to be able to use the Brouwer fixed point theorem, it is sufficient to
show that we have for some 3 > 0, the following relation :

v|ul|? + b(u, @,u) > Bllull®, Vu e V. (45)
This is the goal of the following lemma :

Lemma 5.3 V v > 0 we can choose & verifying (32)-(33) such that
|b(w, @, u)| < 7llull. (46)

From the above lemma, we conclude to the existence of a given k such
that
[¥m(u), (w)] > 0,

for any u € V with ||u]| = k. Then the Brouwer fixed point theorem can be
applied to the function t,,(u) inside any ball of radius k belonging to any
given finite dimensional approximation V;, of V. From this, we deduce the
existence of a Galerkin approximation u,, € V;, of the solution u of (40). By
standard compactness arguments, it follows that u, weakly converges to a
solution u, of (40) in V. (see [5] for more details).
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6 TUniqueness results

Under the assumption that N < 3, we have the following result :

Theorem 6.1 Assume that @ in (LN(Q))N is sufficiently small so that

b(v, 8 0)] < Zlloll”, Yo € V, (47)

and v is sufficiently large so that

v* > 40(|f v + lg-ll-y r,) (48)
where C is the constant in (22) and

x . . 0
and

Gr = V211+
I = on 9

Proof
We procced as in the proof for the standard homogeneous boundary con-

ditions (see for instance [13]).
Suppose that u, is solution of the problem (40). Taking v = u, in (40)
and using (20), we obtain :

VHUOH%/ = _b(um '&, uo) - I/(('&., uo)) - b(ﬁ‘a {"7 uo) + /Fb -7 U, +/Q fum (49)

Using the Green formula, we obtain

. " .0
viuol, = —b(uo, @, up)+ < VAT — Ejuj%—_u + fou, > (50)
J
0 .
+ < Vol + gr,Uo >T, (51)
= —b(Uo, & o)+ < frup > + < §ryup >r, (52)
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Since f € (H1(Q)N and @ € (H'(Q)N, A € (H'(Q))" and then
fe (H:I(Q))N. Similarly, since g, € (H™2(I))N and @ € (H*(Q))" we
have ou € (H2(I))N and then §, € (H™2(T3))V, and the equality above

n
is well defined. The rest of the proof is an adaptation of the proof for the
standard homogeneous boundary conditions (see for instance [13]).

7 Conclusion

In this paper we have shown that the slip boundary conditions resulting
from the application of the Domain Decomposition Time Marching Algo-
rithm to either Navier-Stokes/Navier-Stokes coupling ([9] and [10]) or Navier-
Stokes/Boltzmann coupling ([9], [7], and [8]) are admissible and lead to a well
posed global problem at least in the incompressible case.
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